Period-doublings and orbit-bifurcations in symmetric systems
نویسندگان
چکیده
منابع مشابه
Orbit bifurcations and spectral statistics
Systems whose phase space is mixed have been conjectured to exhibit quantum spectral correlations that are, in the semiclassical limit, a combination of Poisson and randommatrix, with relative weightings determined by the corresponding measures of regular and chaotic orbits. We here identify an additional component in long-range spectral statistics, associated with periodic orbit bifurcations, ...
متن کاملUnnested islands of period doublings in an injected semiconductor laser.
We present a theoretical study of unnested period-doubling islands in three-dimensional rate equations modeling a semiconductor laser subject to external optical injection. In this phenomenon successive curves of period doublings are not arranged in nicely nested islands, but intersect each other. This overall structure is globally organized by several codimension-2 bifurcations. As a consequen...
متن کاملPeriod doublings in coupled parametrically forced damped pendulums.
We study period doublings in N (N = 2, 3, 4, . . .) coupled parametrically forced damped pendulums by varying A (the amplitude of the external driving force) and c (the strength of coupling). With increasing A, the stationary point undergoes multiple period-doubling transitions to chaos. We first investigate the two-coupled case with N = 2. For each period-doubling transition to chaos, the crit...
متن کاملPeriodic-orbit bifurcations and superdeformed shell structure.
We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over the action-angle variables were performed using an improved stationary phase method. The resulting semiclassical level density oscillations and shell-correction energies are in g...
متن کاملOrbit bifurcations and the scarring of wavefunctions
We extend the semiclassical theory of scarring of quantum eigenfunctions n(q) by classical periodic orbits to include situations where these orbits undergo generic bifurcations. It is shown that j n(q)j , averaged locally with respect to position q and the energy spectrum fEng, has structure around bifurcating periodic orbits with an amplitude and length-scale whose ~-dependence is determined b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Center Publications
سال: 1989
ISSN: 0137-6934,1730-6299
DOI: 10.4064/-23-1-197-208